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Abstract
The theory of trembling motion (Zitterbewegung (ZB)) of charge carriers in various narrow-gap
materials is reviewed. Nearly free electrons in a periodic potential, InSb-type semiconductors,
bilayer graphene, monolayer graphene and carbon nanotubes are considered. General features
of ZB are emphasized. It is shown that, when the charge carriers are prepared in the form of
Gaussian wavepackets, ZB has a transient character with a decay time of femtoseconds in
graphene and picoseconds in nanotubes. Zitterbewegung of electrons in graphene in the
presence of an external magnetic field is mentioned. A similarity of ZB in semiconductors to
that of relativistic electrons in a vacuum is stressed. Possible ways of observing trembling
motion in solids are mentioned.

1. Introduction

Zitterbewegung (trembling motion) was theoretically devised
by Schroedinger [1] after Dirac had proposed his equation
describing free relativistic electrons in a vacuum. Schroedinger
showed that, due to a non-commutativity of the quantum
velocity with the Dirac Hamiltonian, relativistic electrons
experience Zitterbewegung (ZB) even in the absence of
external fields. The frequency of ZB is about ω = 2m0c2/h̄
and its amplitude is about the Compton wavelength λc =
h̄/m0c ≈ 3.86 × 10−3 Å. It was later understood that the
phenomenon of ZB is due to an interference of electron states
with positive electron energies (E > m0c2) and those with
negative energies (E < m0c2). In other words, ZB results from
the structure of the Dirac Hamiltonian, which contains both
positive and negative electron energies. It is a purely quantum
effect as it goes beyond Newton’s first law (see the discussion
in [2]). To our knowledge, ZB for free electrons has never been
directly observed. However, in the presence of the Coulomb
potential ZB is manifested in the appearance of the so called
Darwin term. It was pointed out that Zitterbewegung may also
occur in non-relativistic two-band systems in solids [3]. Since
the appearance of papers by Zawadzki [4] and Schliemann et al
[5] the subject of ZB became popular and it was demonstrated
that this phenomenon should occur in various situations in
solids [6–14]. It is the purpose of the present review to outline
main features of ZB in narrow-gap semiconductors.

We begin by elementary considerations based on the
Schroedinger equation. In the absence of external fields
the Hamiltonian is Ĥ = p̂2/2m and the velocity is v̂ j =
∂ Ĥ/∂ p̂ j = p̂ j/m. The time derivative of velocity is easily
calculated to give ˙̂v j = 1/(ih̄)[v̂ j , Ĥ ] = 0. This means that
v̂ j (t) = const, which is equivalent to first Newton’s law stating
that in absence of external forces the velocity is constant.

The situation is different when a Hamiltonian Ĥ has a
matrix form, as in the Dirac equation for relativistic electrons
in a vacuum or in case of two or more interacting energy bands
in solids. Then the quantum velocity v̂ j = ∂ Ĥ/∂ p̂ j , which
is also a matrix, does not commute with the Hamiltonian and
the quantum acceleration dv̂ j/dt does not vanish even in the
absence of external fields. Below we consider such situations
and investigate their consequences for the electron motion.

2. Theory and results

We consider first the case of InSb-type narrow-gap semicon-
ductors (NGS), see [4]. Their band structure is well described
by the model of �6 (conduction), �8 (light and heavy hole) and
�7 (split-off) bands and it is represented by an 8 × 8 operator
matrix. Assuming the spin–orbit energy � � Eg, neglecting
the free-electron terms and taking the momentum components
p̂z �= 0 and p̂x = p̂y = 0, one obtains for the conduction and
light-hole bands the Hamiltonian

Ĥ = uα̂3 p̂z + 1
2Egβ̂, (1)
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Figure 1. Energy-wavevector dependence in the forbidden gap of
InAs. Various symbols show the experimental data of Parker and
Mead [17]. The solid line is a theoretical fit. The determined
parameters are λZ = 41.5 Å and u = 1.33 × 108 cm s−1 (after [4]).

where α̂3 and β̂ are the well known 4 × 4 Dirac matrices
and u = (Eg/2m∗

0)
1/2 ≈ 1 × 108 cm s−1 is the maximum

velocity. Hamiltonian (1) has the form appearing in the Dirac
equation. The electron velocity is ˙̂z = (1/ih̄)[ẑ, Ĥ ] = uα̂3. To
determine α̂3(t) one calculates the commutator of α̂3 with Ĥ
and integrates the result with respect to time. This gives ˙̂z(t),
and ẑ(t) is calculated integrating again. The result is

ẑ(t) = ẑ(0)+ u2 p̂z

Ĥ
+ ih̄u

2Ĥ
Â0

[
exp

(
−2iĤ t

h̄

)
− 1

]
, (2)

where Â0 = α̂(0) − u p̂z/Ĥ . The first two terms represent
the classical motion. The third term describes time-dependent
oscillations with the frequency ωZ ≈ Eg/h̄. Since Â0 ≈ 1, the
amplitude of oscillations is h̄u/Ĥ ≈ h̄/(m∗

0u) = λZ . Here

λZ = h̄

m∗
0u

(3)

is an important quantity analogous to the Compton wavelength
λc = h̄/(m0c) for relativistic electrons in a vacuum. The
oscillations analogous to those described in (2) are called
Zitterbewegung. The quantity λZ can be measured directly.
The energy for electrons in NGS can be written in a ‘semi-
relativistic’ form (see [15]) E = ±h̄u(λ−2

Z + k2)1/2. For
k2 > 0 this formula describes the conduction and light-hole
bands. For imaginary values of k we have k2 < 0 and the above
formula describes the dispersion in the energy gap. This region
is classically forbidden but can become accessible through
quantum tunneling. Figure 1 shows the data for the dispersion
in the gap of InAs, obtained from tunneling experiments. The
fit gives λZ ≈ 41.5 Å and u ≈ 1.33 × 108 cm s−1, in good
agreement with the estimation for InAs (m∗

0 ≈ 0.024m0).
Similar data for GaAs give λZ between 10 and 13 Å [16],
again in good agreement with the theoretical predictions (m∗

0 ≈
0.066m0).

Figure 2. Transient Zitterbewegung oscillations of nearly free
electrons versus time, calculated for a very narrow wavepacket
centered at various kz0 values. The band parameters correspond to
GaAs.

To demonstrate the universality of the two-band situation
we consider the well known case of nearly free electrons in a
solid in which the periodic lattice potential V (r) is treated as a
perturbation (see [10]). Near the Brillouin zone boundary the
Hamiltonian has, to a good approximation, a 2 × 2 form

Ĥ =
(
εk+q Vq

V ∗
q εk

)
, (4)

where V ∗
q = V−q are the Fourier coefficients in the expansion

of V (r), and εk = h̄2k2
z /2m0 is the free-electron energy. The

2 × 2 quantum velocity v̂z can now be calculated and the
acceleration ˙̂vz is computed in the standard way. Finally, one
calculates the displacement matrix ẑi j .

Until now we treated the electrons as plane waves.
However, Lock [18] in his important paper observed that such a
wave is not localized and it seems to be of a limited practicality
to speak of rapid oscillations in the average position of a wave
of infinite extent. Since ZB is by its nature not a stationary
state, but a dynamical phenomenon, it is natural to study it with
the use of wavepackets. These became a practical instrument
when femtosecond pulse technology emerged (see [19]). Thus,
in a more realistic picture the electrons are described by a
wavepacket

ψ(z) = 1√
2π

d1/2

π1/4

∫ ∞

∞
exp

(− 1
2 d2(kz − kz0)

2
)

× exp(ikzz) dkz

(
1
0

)
. (5)

In figure 2 we show ZB oscillations of ẑ11(t) averaged over
wavepacket (5). The essential result is that, in agreement with
Lock’s general predictions, the ZB oscillations of a wavepacket
have a transient character, i.e. they disappear with time on
a femtosecond scale. The frequency of oscillations is ωZ =
Eg/h̄, where Eg = 2|Vq|.

Now we turn to interesting and intensively studied
materials: bilayer and monolayer graphene and carbon
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Figure 3. Zitterbewegung of a charge carrier in bilayer graphene
versus time, calculated for a Gaussian wavepacket width d = 300 Å
and k0y = 3.5 × 108 m−1: (a) displacement, (b) electric current. The
decay time is about �−1

Z = 40 fs (after [11]).

nanotubes (CNT), see [8, 11, 20]. The two-dimensional
Hamiltonian for bilayer graphene is well approximated by [21]

ĤB = − 1

2m∗

(
0 ( p̂x − i p̂y)

2

( p̂x + i p̂y)
2 0

)
. (6)

The energy spectrum is E = ±h̄2k2/2m∗, i.e. there is no
energy gap between the conduction and valence bands. The
position operator in the Heisenberg picture is a 2 × 2 matrix
x̂(t) = exp(iĤBt/h̄)x̂ exp(−iĤBt/h̄). We calculate

x11(t) = x(0)+ ky

k2

[
1 − cos

(
h̄k2t

m∗

)]
, (7)

where k2 = k2
x + k2

y . The third term represents Zitterbewegung

with the frequency h̄ωZ = 2h̄2k2/2m∗, corresponding to
the energy difference between the upper and lower energy
branches for a given value of k. In order to have ZB in the
x direction one needs a non-vanishing momentum ky in the y
direction. If the electron is represented by a two-dimensional
Gaussian wavepacket similar to that given in equation (5), the
integrals of interest can be calculated analytically. In figure 3
we show observable physical quantities related to ZB. It can be
seen that they have a transient character.

To look for the reason for the transient character of
ZB the electron wavepacket is decomposed into sub-packets
corresponding to positive and negative electron energies. It
turns out that the ‘positive’ and ‘negative’ sub-packets move
in opposite directions with the same velocity v = h̄k0yt/2m∗,
where h̄k0y is the initial value of momentum. The relative
velocity is vrel = h̄k0yt/m∗. Each of these packets has an
initial width d and it spreads (slowly) in time. After a time
�−1

Z = d/vrel the distance between the two packets equals
d , so the sub-packets cannot interfere and the ZB amplitude
diminishes. This reasoning gives the decay constant �Z =
h̄k0y/m∗d , in agreement with the analytical results [11]. Thus,
the transient character of the ZB oscillations in a collisionless
sample is due to an increasing spacial separation of the sub-
packets corresponding to the positive and negative energy
states.

Figure 4. Oscillatory electric current in the x direction caused by ZB
in monolayer graphene versus time, calculated for a Gaussian
wavepacket with k0y = 1.2 × 109 m−1 and various packet widths d
(after [11]).

Now, we turn to monolayer graphene. The two-
dimensional band Hamiltonian describing its band structure
is [22]

ĤM = u

(
0 p̂x − i p̂y

p̂x + i p̂y 0

)
, (8)

where u ≈ 1 × 108 cm s−1. The resulting energy
dispersion is linear in momentum: E = ±uh̄k, where

k =
√

k2
x + k2

y . The quantum velocity in the Schroedinger

picture is v̂ j = ∂ ĤM/∂ p̂ j , it does not commute with
the Hamiltonian. In the Heisenberg picture we have
v̂(t) = exp(iĤMt/h̄)v̂ exp(−iĤMt/h̄). Using equation (8) we
calculate

v(11)
x = u

ky

k
sin(2ukt). (9)

The above equation describes trembling motion with the
frequency ωZ = 2uk, determined by the energy difference
between the upper and lower energy branches for a given value
of k. As before, ZB in the direction x occurs only if there is
a non-vanishing momentum h̄ky . The results for the current
j̄x = ev̄x are plotted in figure 4 for k0y = 1.2 × 109 m−1 and
different packet widths d . It is seen that the ZB frequency does
not depend on d and is nearly equal to ωZ , as given above for
the plane wave. On the other hand, the amplitude of the ZB
does depend on d and we deal with decay times of the order of
femtoseconds.

Finally, we consider monolayer graphene sheets rolled
into single semiconducting carbon nanotubes (CNT). The band
Hamiltonian in this case is similar to equation (8) except that,
because of the periodic boundary conditions, the momentum
p̂x is quantized and takes discrete values h̄kx = h̄knν , where
knν = (2π/L)(n − ν/3), n = 0,±1, . . ., ν = ±1, and L
is the length of circumference of CNT [23]. As a result, the
free-electron motion can occur only in the direction y, parallel
to the tube axis. The geometry of CNT has two important
consequences. First, for ν = ±1 there always exists a non-
vanishing value of the quantized momentum h̄knν . Second, for

3



J. Phys.: Condens. Matter 20 (2008) 454208 W Zawadzki and T M Rusin

Figure 5. Zitterbewegung of charge carriers in the ground subband
of a single carbon nanotube of L = 200 Å versus time (logarithmic
scale), calculated for Gaussian wavepackets of two different widths d
and k0y = 0. After the ZB disappears a constant shift remains. The
two carriers are described by different quantum numbers ν
(after [11]).

each value of knν there exists k−n,−ν = −knν resulting in the

same subband energy E = ±E , where E = h̄u
√

k2
nν + k2

y .

The time-dependent velocity v̂y(t) and the displacement
ŷ(t) can be calculated for the plane electron wave in the usual
way and they exhibit ZB oscillations (see [8]). For small
momenta ky the ZB frequency is h̄ωZ = Eg, where Eg =
2h̄uknν . The ZB amplitude is λZ ≈ 1/knν . However, we are
again interested in the displacement ȳ(t) of a charge carrier
represented by a one-dimensional wavepacket analogous to
that described in equation (5), see [11]. Figure 5 shows the
ZB oscillations calculated for a Gaussian wavepacket of two
widths. The decay times are of the order of picoseconds,
i.e. much larger than in bilayer and monolayer graphene.
The reason is that ZB oscillations occur due to the ‘built in’
momentum kx arising from the tube’s topology. In other words,
the long decay time is due to the one-dimensionality of the
system.

The last subject we consider is the trembling motion of
electrons in monolayer graphene in the presence of an external
magnetic field B ‖ z, see [12]. The magnetic field is known
to cause no interband electron transitions, so the essential
features of ZB, which results from an interference of positive
and negative energy states of the system, are expected not to be
destroyed. On the other hand, introduction of an external field
provides an important parameter affecting the ZB behavior.
The essential feature introduced by the magnetic field is a
quantization of the electron spectrum Ens = sh̄ω

√
n, where

n = 0, 1, . . . and s = ±1 for the conduction and valence
bands, respectively. The basic energy is h̄ω = √

2h̄u/L,
with 1/L = (eB/h̄)1/2. The velocity operators can again be
calculated in the time-dependent Heisenberg picture. These
are subsequently averaged over a Gaussian wavepacket and
they exhibit trembling motion. The presence of a quantizing
magnetic field has very important effects on ZB.

(1) For B �= 0 the ZB oscillations are permanent, for B = 0
they are transient.

(2) For B �= 0 many ZB frequencies appear, for B = 0 only
one frequency is at work.

(3) For B �= 0 both interband and intraband (cyclotron)
frequencies contribute to ZB, for B = 0 there are no
intraband frequencies.

(4) Magnetic field intensity changes not only the ZB
frequencies but the entire character of the ZB spectrum.

3. Discussion

It follows from the recent theoretical papers that the
phenomenon of ZB should appear quite often in solids.
Whenever one deals with interacting energy bands, charge
carriers having a non-vanishing momentum should experience
trembling motion. Its frequency ωZ is about h̄ωZ ≈ �E ,
where �E is the energy separation between the interacting
‘positive’ and ‘negative’ states. If the real energy gap Eg exists,
there is�E = Eg; if Eg = 0 the energy separation�E is caused
by the non-vanishing value of momentum. The amplitude
λZ goes as λZ ∝ 1/�E . The latter can reach the values
of tens of nanometers in narrow-gap semiconductors. As
mentioned in section 1, a similar phenomenon should occur for
free relativistic electrons in a vacuum, but both its frequency
and amplitude are much less favorable than for electrons in
semiconductors, see [24, 25]. This correspondence of the
trembling motions illustrates a general analogy between the
behavior of electrons in narrow-gap semiconductors and that
of relativistic electrons in a vacuum [25]. Zitterbewegung
was also proposed for other systems [26, 27], and it has
some interesting analogies in quantum optics [28]. As to
the ways of observing ZB, one can try to detect directly the
moving charge at corresponding frequencies using scanning
probe microscopy [29, 30]. One can also try to measure the
ac current related to the oscillating charge, see figures 3, 4
and reference [12]. Finally, and this is probably the most
promising way, the oscillating charges should produce an
observable dipole radiation. An external magnetic field can
continuously change the frequency of such radiation. It
appears that graphene in the presence of a magnetic field
provides the most favorable conditions for an observation of
the fascinating phenomenon of Zitterbewegung. Very recently,
an acoustic analogue of Zitterbewegung was observed in a two-
dimensional sonic crystal [31].
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